Processing information in mass_data class

Data preparation

In mass_dataset class object, it contains all the processing information in it. We can trace the analysis and parameters so we can do the reproducible analysis.

library(massdataset)

data("expression_data")
data("sample_info")
data("variable_info")

object =
  create_mass_dataset(
    expression_data = expression_data,
    sample_info = sample_info,
    variable_info = variable_info
  )

library(tidyverse)

object =
  object %>%
  activate_mass_dataset(what = "expression_data") %>%
  filter(!is.na(QC_1))

object =
  object %>%
  activate_mass_dataset(what = "expression_data") %>%
  filter(!is.na(QC_2))

object =
  object %>%
  mutate_mean_intensity()

object =
  object %>%
  mutate_median_intensity() %>%
  mutate_rsd()

process_info

process_info = extract_process_info(object)
process_info
#> $create_mass_dataset
#> -------------------- 
#> pacakge_name: massdataset 
#> function_name: create_mass_dataset() 
#> time: 2024-09-25 19:11:39.449469 
#> parameters:
#> no : no 
#> 
#> $filter
#> $filter[[1]]
#> -------------------- 
#> pacakge_name: massdataset 
#> function_name: filter() 
#> time: 2024-09-25 19:11:39.843294 
#> parameters:
#> parameter : `~!is.na(QC_1)` 
#> 
#> $filter[[2]]
#> -------------------- 
#> pacakge_name: massdataset 
#> function_name: filter() 
#> time: 2024-09-25 19:11:39.844175 
#> parameters:
#> parameter : `~!is.na(QC_2)` 
#> 
#> 
#> $mutate_mean_intensity
#> -------------------- 
#> pacakge_name: massdataset 
#> function_name: mutate_mean_intensity() 
#> time: 2024-09-25 19:11:39.847539 
#> parameters:
#> according_to_samples : c("Blank_3", "Blank_4", "QC_1", "QC_2", "PS4P1", "PS4P2", "PS4P3", "PS4P4") 
#> 
#> $mutate_median_intensity
#> -------------------- 
#> pacakge_name: massdataset 
#> function_name: mutate_median_intensity() 
#> time: 2024-09-25 19:11:39.854193 
#> parameters:
#> according_to_samples : c("Blank_3", "Blank_4", "QC_1", "QC_2", "PS4P1", "PS4P2", "PS4P3", "PS4P4") 
#> 
#> $mutate_rsd
#> -------------------- 
#> pacakge_name: massdataset 
#> function_name: mutate_rsd() 
#> time: 2024-09-25 19:11:39.85757 
#> parameters:
#> according_to_samples : c("Blank_3", "Blank_4", "QC_1", "QC_2", "PS4P1", "PS4P2", "PS4P3", "PS4P4")

The process_info contains all the steps which are ordered by time.

process_info$mutate_median_intensity
#> -------------------- 
#> pacakge_name: massdataset 
#> function_name: mutate_median_intensity() 
#> time: 2024-09-25 19:11:39.854193 
#> parameters:
#> according_to_samples : c("Blank_3", "Blank_4", "QC_1", "QC_2", "PS4P1", "PS4P2", "PS4P3", "PS4P4")
process_info$mutate_median_intensity@parameter
#> $according_to_samples
#> [1] "Blank_3" "Blank_4" "QC_1"    "QC_2"    "PS4P1"   "PS4P2"   "PS4P3"  
#> [8] "PS4P4"

Output html processing information

We can output the process_info into a html format file, so we can know what processing steps have been made to this object and the accurate parameters.

Then we can use report_parameters() to output this into a html file.

report_parameters(object = object, 
                  path = "data_cleaning")

A html file named as parameter_report.html will be generated and saved in data_cleaning folder.

Session information

sessionInfo()
#> R version 4.4.1 (2024-06-14)
#> Platform: aarch64-apple-darwin20
#> Running under: macOS 15.0
#> 
#> Matrix products: default
#> BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0
#> 
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#> 
#> time zone: Asia/Singapore
#> tzcode source: internal
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#>  [1] lubridate_1.9.3    forcats_1.0.0      stringr_1.5.1      purrr_1.0.2       
#>  [5] readr_2.1.5        tidyr_1.3.1        tibble_3.2.1       tidyverse_2.0.0   
#>  [9] ggplot2_3.5.1      dplyr_1.1.4        magrittr_2.0.3     masstools_1.0.13  
#> [13] massdataset_1.0.34
#> 
#> loaded via a namespace (and not attached):
#>   [1] bitops_1.0-8                pbapply_1.7-2              
#>   [3] remotes_2.5.0               rlang_1.1.4                
#>   [5] clue_0.3-65                 GetoptLong_1.0.5           
#>   [7] matrixStats_1.3.0           compiler_4.4.1             
#>   [9] png_0.1-8                   vctrs_0.6.5                
#>  [11] reshape2_1.4.4              ProtGenerics_1.36.0        
#>  [13] pkgconfig_2.0.3             shape_1.4.6.1              
#>  [15] crayon_1.5.3                fastmap_1.2.0              
#>  [17] XVector_0.44.0              utf8_1.2.4                 
#>  [19] rmarkdown_2.28              tzdb_0.4.0                 
#>  [21] preprocessCore_1.66.0       UCSC.utils_1.0.0           
#>  [23] xfun_0.47                   MultiAssayExperiment_1.30.3
#>  [25] zlibbioc_1.50.0             cachem_1.1.0               
#>  [27] GenomeInfoDb_1.40.1         jsonlite_1.8.8             
#>  [29] DelayedArray_0.30.1         BiocParallel_1.38.0        
#>  [31] parallel_4.4.1              cluster_2.1.6              
#>  [33] R6_2.5.1                    bslib_0.8.0                
#>  [35] stringi_1.8.4               RColorBrewer_1.1-3         
#>  [37] limma_3.60.4                GenomicRanges_1.56.1       
#>  [39] jquerylib_0.1.4             Rcpp_1.0.13                
#>  [41] bookdown_0.40               SummarizedExperiment_1.34.0
#>  [43] iterators_1.0.14            knitr_1.48                 
#>  [45] IRanges_2.38.1              timechange_0.3.0           
#>  [47] Matrix_1.7-0                igraph_2.0.3               
#>  [49] tidyselect_1.2.1            rstudioapi_0.16.0          
#>  [51] abind_1.4-5                 yaml_2.3.10                
#>  [53] affy_1.82.0                 doParallel_1.0.17          
#>  [55] codetools_0.2-20            blogdown_1.19              
#>  [57] lattice_0.22-6              plyr_1.8.9                 
#>  [59] withr_3.0.1                 Biobase_2.64.0             
#>  [61] evaluate_0.24.0             zip_2.3.1                  
#>  [63] circlize_0.4.16             BiocManager_1.30.25        
#>  [65] affyio_1.74.0               pillar_1.9.0               
#>  [67] MatrixGenerics_1.16.0       foreach_1.5.2              
#>  [69] stats4_4.4.1                MSnbase_2.30.1             
#>  [71] MALDIquant_1.22.3           ncdf4_1.23                 
#>  [73] generics_0.1.3              RCurl_1.98-1.16            
#>  [75] rprojroot_2.0.4             hms_1.1.3                  
#>  [77] S4Vectors_0.42.1            munsell_0.5.1              
#>  [79] scales_1.3.0                glue_1.7.0                 
#>  [81] lazyeval_0.2.2              tools_4.4.1                
#>  [83] mzID_1.42.0                 QFeatures_1.14.2           
#>  [85] vsn_3.72.0                  mzR_2.38.0                 
#>  [87] openxlsx_4.2.7              XML_3.99-0.17              
#>  [89] grid_4.4.1                  impute_1.78.0              
#>  [91] MsCoreUtils_1.16.1          colorspace_2.1-1           
#>  [93] GenomeInfoDbData_1.2.12     PSMatch_1.8.0              
#>  [95] cli_3.6.3                   fansi_1.0.6                
#>  [97] S4Arrays_1.4.1              ComplexHeatmap_2.20.0      
#>  [99] AnnotationFilter_1.28.0     pcaMethods_1.96.0          
#> [101] gtable_0.3.5                sass_0.4.9                 
#> [103] digest_0.6.37               BiocGenerics_0.50.0        
#> [105] SparseArray_1.4.8           rjson_0.2.22               
#> [107] htmltools_0.5.8.1           lifecycle_1.0.4            
#> [109] httr_1.4.7                  here_1.0.1                 
#> [111] statmod_1.5.0               GlobalOptions_0.1.2        
#> [113] MASS_7.3-61
Previous