mass_dataset
class object can also contain MS2 data.
Data preparation
mass_dataset
class object
We need to create a mass_dataset
class object first, see this document. And here we use the data from this step as an example.
load("feature_table/object_pos")
load("feature_table/object_neg")
MS2 data
The MS2 raw data should be converted to mgf
format data. Please refer this document.
Here we use the demo data for tidymass
, please download it and put it in the mgf_ms2_data
folder.
Then uncompress it.
Add MS2 to mass_dataset
class object
Positive mode.
library(massdataset)
object_pos2 =
mutate_ms2(
object = object_pos,
column = "rp",
polarity = "positive",
ms1.ms2.match.mz.tol = 10,
ms1.ms2.match.rt.tol = 15,
path = "mgf_ms2_data/POS/"
)
object_pos2
#> --------------------
#> massdataset version: 1.0.25
#> --------------------
#> 1.expression_data:[ 1612 x 36 data.frame]
#> 2.sample_info:[ 36 x 4 data.frame]
#> 36 samples:bl20210902_3 bl20210902_4 bl20210902_5 ... bl20210902_37 bl20210902_38
#> 3.variable_info:[ 1612 x 3 data.frame]
#> 1612 variables:M86T44_POS M90T638_POS M91T631_POS ... M1197T265_POS M1198T265_POS
#> 4.sample_info_note:[ 4 x 2 data.frame]
#> 5.variable_info_note:[ 3 x 2 data.frame]
#> 6.ms2_data:[ 9 variables x 9 MS2 spectra]
#> --------------------
#> Processing information
#> 2 processings in total
#> create_mass_dataset ----------
#> Package Function.used Time
#> 1 massdataset create_mass_dataset() 2023-09-04 00:57:14
#> mutate_ms2 ----------
#> Package Function.used Time
#> 1 massdataset mutate_ms2() 2024-09-25 17:22:02
object_pos2@ms2_data
#> $`QEP_SGA_QC_posi_ms2_ce25_01.mgf;QEP_SGA_QC_posi_ms2_ce25_02.mgf;QEP_SGA_QC_posi_ms2_ce50_01.mgf;QEP_SGA_QC_posi_ms2_ce50_02.mgf`
#> --------------------
#> column: rp
#> polarity: positive
#> mz_tol: 10
#> rt_tol (second): 15
#> --------------------
#> 9 variables:
#> M103T92_POS M120T92_1_POS M133T255_POS M149T93_POS M166T94_POS...
#> 9 MS2 spectra.
#> mz103.054814801682rt96.92601 mz120.081003145403rt103.263636 mz133.101364135742rt269.674188 mz149.059844970703rt99.091818 mz166.086254683842rt103.128918...
Negative mode.
object_neg2 =
mutate_ms2(
object = object_neg,
column = "rp",
polarity = "negative",
ms1.ms2.match.mz.tol = 10,
ms1.ms2.match.rt.tol = 15,
path = "mgf_ms2_data/NEG/"
)
object_neg2@ms2_data
#> $`QEP_SGA_QC_neg_ms2_ce25_01.mgf;QEP_SGA_QC_neg_ms2_ce25_02.mgf;QEP_SGA_QC_neg_ms2_ce50_01.mgf;QEP_SGA_QC_neg_ms2_ce50_02.mgf`
#> --------------------
#> column: rp
#> polarity: negative
#> mz_tol: 10
#> rt_tol (second): 15
#> --------------------
#> 44 variables:
#> M101T106_NEG M116T626_NEG M116T505_NEG M116T483_NEG M116T586_NEG...
#> 43 MS2 spectra.
#> mz101.023086547852rt97.383582 mz115.919448852539rt634.03908 mz115.919456481934rt515.338818 mz115.919372558594rt471.106446 mz115.919403076172rt591.442212...
Session information
sessionInfo()
#> R version 4.4.1 (2024-06-14)
#> Platform: aarch64-apple-darwin20
#> Running under: macOS 15.0
#>
#> Matrix products: default
#> BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
#>
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#>
#> time zone: Asia/Singapore
#> tzcode source: internal
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] ggplot2_3.5.1 dplyr_1.1.4 magrittr_2.0.3 masstools_1.0.13
#> [5] massdataset_1.0.34
#>
#> loaded via a namespace (and not attached):
#> [1] bitops_1.0-8 pbapply_1.7-2
#> [3] remotes_2.5.0 rlang_1.1.4
#> [5] clue_0.3-65 GetoptLong_1.0.5
#> [7] matrixStats_1.3.0 compiler_4.4.1
#> [9] png_0.1-8 vctrs_0.6.5
#> [11] reshape2_1.4.4 stringr_1.5.1
#> [13] ProtGenerics_1.36.0 pkgconfig_2.0.3
#> [15] shape_1.4.6.1 crayon_1.5.3
#> [17] fastmap_1.2.0 XVector_0.44.0
#> [19] utf8_1.2.4 rmarkdown_2.28
#> [21] tzdb_0.4.0 preprocessCore_1.66.0
#> [23] UCSC.utils_1.0.0 purrr_1.0.2
#> [25] xfun_0.47 MultiAssayExperiment_1.30.3
#> [27] zlibbioc_1.50.0 cachem_1.1.0
#> [29] GenomeInfoDb_1.40.1 jsonlite_1.8.8
#> [31] DelayedArray_0.30.1 BiocParallel_1.38.0
#> [33] parallel_4.4.1 cluster_2.1.6
#> [35] R6_2.5.1 bslib_0.8.0
#> [37] stringi_1.8.4 RColorBrewer_1.1-3
#> [39] limma_3.60.4 GenomicRanges_1.56.1
#> [41] jquerylib_0.1.4 Rcpp_1.0.13
#> [43] bookdown_0.40 SummarizedExperiment_1.34.0
#> [45] iterators_1.0.14 knitr_1.48
#> [47] readr_2.1.5 IRanges_2.38.1
#> [49] Matrix_1.7-0 igraph_2.0.3
#> [51] tidyselect_1.2.1 rstudioapi_0.16.0
#> [53] abind_1.4-5 yaml_2.3.10
#> [55] affy_1.82.0 doParallel_1.0.17
#> [57] codetools_0.2-20 blogdown_1.19
#> [59] lattice_0.22-6 tibble_3.2.1
#> [61] plyr_1.8.9 withr_3.0.1
#> [63] Biobase_2.64.0 evaluate_0.24.0
#> [65] zip_2.3.1 circlize_0.4.16
#> [67] BiocManager_1.30.25 affyio_1.74.0
#> [69] pillar_1.9.0 MatrixGenerics_1.16.0
#> [71] foreach_1.5.2 stats4_4.4.1
#> [73] MSnbase_2.30.1 MALDIquant_1.22.3
#> [75] ncdf4_1.23 generics_0.1.3
#> [77] RCurl_1.98-1.16 rprojroot_2.0.4
#> [79] hms_1.1.3 S4Vectors_0.42.1
#> [81] munsell_0.5.1 scales_1.3.0
#> [83] glue_1.7.0 lazyeval_0.2.2
#> [85] tools_4.4.1 mzID_1.42.0
#> [87] QFeatures_1.14.2 vsn_3.72.0
#> [89] mzR_2.38.0 openxlsx_4.2.7
#> [91] XML_3.99-0.17 grid_4.4.1
#> [93] impute_1.78.0 tidyr_1.3.1
#> [95] MsCoreUtils_1.16.1 colorspace_2.1-1
#> [97] GenomeInfoDbData_1.2.12 PSMatch_1.8.0
#> [99] cli_3.6.3 fansi_1.0.6
#> [101] S4Arrays_1.4.1 ComplexHeatmap_2.20.0
#> [103] AnnotationFilter_1.28.0 pcaMethods_1.96.0
#> [105] gtable_0.3.5 sass_0.4.9
#> [107] digest_0.6.37 BiocGenerics_0.50.0
#> [109] SparseArray_1.4.8 rjson_0.2.22
#> [111] htmltools_0.5.8.1 lifecycle_1.0.4
#> [113] httr_1.4.7 here_1.0.1
#> [115] statmod_1.5.0 GlobalOptions_0.1.2
#> [117] MASS_7.3-61