load("demo_data/feature_table/object_pos")
load("demo_data/feature_table/object_neg")
6 Add MS2 spectra data into mass_dataset class object”
mass_dataset
class object can also contain MS2 data.
6.1 Data preparation
6.1.1 mass_dataset
class object
We need to create a mass_dataset
class object first, see this document. And here we use the data from this step as an example.
6.1.2 MS2 data
The MS2 raw data should be converted to mgf
format data. Please refer this document.
Here we use the demo data for tidymass
, please download it and put it in the mgf_ms2_data
folder.
Then uncompress it.
6.2 Add MS2 to mass_dataset
class object
Positive mode.
library(massdataset)
=
object_pos2 mutate_ms2(
object = object_pos,
column = "rp",
polarity = "positive",
ms1.ms2.match.mz.tol = 10,
ms1.ms2.match.rt.tol = 15,
path = "demo_data/mgf_ms2_data/POS/"
)
object_pos2
--------------------
massdataset version: 1.0.25
--------------------
1.expression_data:[ 1612 x 36 data.frame]
2.sample_info:[ 36 x 4 data.frame]
36 samples:bl20210902_3 bl20210902_4 bl20210902_5 ... bl20210902_37 bl20210902_38
3.variable_info:[ 1612 x 3 data.frame]
1612 variables:M86T44_POS M90T638_POS M91T631_POS ... M1197T265_POS M1198T265_POS
4.sample_info_note:[ 4 x 2 data.frame]
5.variable_info_note:[ 3 x 2 data.frame]
6.ms2_data:[ 9 variables x 9 MS2 spectra]
--------------------
Processing information
2 processings in total
create_mass_dataset ----------
Package Function.used Time
1 massdataset create_mass_dataset() 2023-09-04 00:57:14
mutate_ms2 ----------
Package Function.used Time
1 massdataset mutate_ms2() 2025-07-20 19:12:02
@ms2_data object_pos2
$`QEP_SGA_QC_posi_ms2_ce25_01.mgf;QEP_SGA_QC_posi_ms2_ce25_02.mgf;QEP_SGA_QC_posi_ms2_ce50_01.mgf;QEP_SGA_QC_posi_ms2_ce50_02.mgf`
--------------------
column: rp
polarity: positive
mz_tol: 10
rt_tol (second): 15
--------------------
9 variables:
M103T92_POS M120T92_1_POS M133T255_POS M149T93_POS M166T94_POS...
9 MS2 spectra.
mz103.054814801682rt96.92601 mz120.081003145403rt103.263636 mz133.101364135742rt269.674188 mz149.059844970703rt99.091818 mz166.086254683842rt103.128918...
Negative mode.
=
object_neg2 mutate_ms2(
object = object_neg,
column = "rp",
polarity = "negative",
ms1.ms2.match.mz.tol = 10,
ms1.ms2.match.rt.tol = 15,
path = "demo_data/mgf_ms2_data/NEG/"
)
@ms2_data object_neg2
$`QEP_SGA_QC_neg_ms2_ce25_01.mgf;QEP_SGA_QC_neg_ms2_ce25_02.mgf;QEP_SGA_QC_neg_ms2_ce50_01.mgf;QEP_SGA_QC_neg_ms2_ce50_02.mgf`
--------------------
column: rp
polarity: negative
mz_tol: 10
rt_tol (second): 15
--------------------
44 variables:
M101T106_NEG M116T626_NEG M116T505_NEG M116T483_NEG M116T586_NEG...
43 MS2 spectra.
mz101.023086547852rt97.383582 mz115.919448852539rt634.03908 mz115.919456481934rt515.338818 mz115.919372558594rt471.106446 mz115.919403076172rt591.442212...
6.3 Session information
sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: aarch64-apple-darwin20
Running under: macOS 15.5
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Asia/Singapore
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggplot2_3.5.1 dplyr_1.1.4 magrittr_2.0.3 masstools_1.0.15
[5] massdataset_1.0.34
loaded via a namespace (and not attached):
[1] pbapply_1.7-2 remotes_2.5.0
[3] rlang_1.1.4 clue_0.3-65
[5] GetoptLong_1.0.5 matrixStats_1.4.1
[7] compiler_4.4.1 png_0.1-8
[9] vctrs_0.6.5 reshape2_1.4.4
[11] rvest_1.0.4 stringr_1.5.1
[13] ProtGenerics_1.36.0 pkgconfig_2.0.3
[15] shape_1.4.6.1 crayon_1.5.3
[17] fastmap_1.2.0 XVector_0.44.0
[19] rmarkdown_2.29 tzdb_0.4.0
[21] UCSC.utils_1.0.0 preprocessCore_1.66.0
[23] purrr_1.0.2 xfun_0.52
[25] MultiAssayExperiment_1.30.3 zlibbioc_1.50.0
[27] GenomeInfoDb_1.40.1 jsonlite_1.8.9
[29] DelayedArray_0.30.1 BiocParallel_1.38.0
[31] parallel_4.4.1 cluster_2.1.6
[33] R6_2.5.1 stringi_1.8.4
[35] RColorBrewer_1.1-3 limma_3.60.6
[37] GenomicRanges_1.56.2 Rcpp_1.0.13-1
[39] SummarizedExperiment_1.34.0 iterators_1.0.14
[41] knitr_1.49 readr_2.1.5
[43] IRanges_2.38.1 Matrix_1.7-1
[45] igraph_2.1.1 tidyselect_1.2.1
[47] rstudioapi_0.17.1 abind_1.4-8
[49] doParallel_1.0.17 codetools_0.2-20
[51] affy_1.82.0 lattice_0.22-6
[53] tibble_3.2.1 plyr_1.8.9
[55] withr_3.0.2 Biobase_2.64.0
[57] evaluate_1.0.1 zip_2.3.1
[59] xml2_1.3.6 circlize_0.4.16
[61] pillar_1.11.0 affyio_1.74.0
[63] BiocManager_1.30.25 MatrixGenerics_1.16.0
[65] foreach_1.5.2 stats4_4.4.1
[67] MSnbase_2.30.1 MALDIquant_1.22.3
[69] ncdf4_1.23 generics_0.1.3
[71] hms_1.1.3 S4Vectors_0.42.1
[73] munsell_0.5.1 scales_1.3.0
[75] glue_1.8.0 lazyeval_0.2.2
[77] tools_4.4.1 mzID_1.42.0
[79] QFeatures_1.14.2 vsn_3.72.0
[81] mzR_2.38.0 openxlsx_4.2.7.1
[83] XML_3.99-0.17 grid_4.4.1
[85] impute_1.78.0 tidyr_1.3.1
[87] MsCoreUtils_1.16.1 colorspace_2.1-1
[89] GenomeInfoDbData_1.2.12 PSMatch_1.8.0
[91] cli_3.6.3 S4Arrays_1.4.1
[93] ComplexHeatmap_2.20.0 AnnotationFilter_1.28.0
[95] pcaMethods_1.96.0 gtable_0.3.6
[97] digest_0.6.37 BiocGenerics_0.50.0
[99] SparseArray_1.4.8 rjson_0.2.23
[101] htmlwidgets_1.6.4 htmltools_0.5.8.1
[103] lifecycle_1.0.4 httr_1.4.7
[105] GlobalOptions_0.1.2 statmod_1.5.0
[107] MASS_7.3-61