0   Install tidymass

 

TidyMass packages:

Install tidymass packages

Please make sure your internet is connected and stable.

And if you have any problems during the installation, please feel free to send email to us (shenxt1990@outlook.edu) or contact me via other social medias.

Update R version ðŸ”—︎

tidymass require R version > 4.1.

You can check your R version in your console:

version

If your R version is < 4.1, please download and install the latest version of R, and then restart your R.

Install tidymass from GitLab ðŸ”—︎

Update remotes pacakge

You can use the remotes package to install tidymass.

Please update remotes first and then restart your r session.

install.packages("remotes")

Install tidymass

Install tidymass by:

remotes::install_gitlab("tidymass/tidymass", dependencies = TRUE)

During installing, it may ask you several times: “Would you like to update some pacakges?” Just Enter the Enter or Retrun key to skip updates.

If you have a completely fresh R enivorment, it needs to install all the dependent packages, so it will take around 30 mins to finish the installation of tidymass. In my Mac pro (macOS Monterey, 2.3 GHz 8-core intel core i9, 16GB 2667 MHz DDR4), it takes about 30 mins to finish the installation in a completely fresh R enivorment.

Install tidymass from GitHub ðŸ”—︎

Install tidymass

remotes::install_github("tidymass/tidymass", dependencies = TRUE)

During the installation, it will ask if you want to update some packages for few times, just enter Enter or Reurn key to skip it.

If there is a error like below:

Error: Failed to install 'tidymass' from GitHub: HTTP error 403. API rate limit exceeded for 171.66.10.237. (But here's the good news: Authenticated requests get a higher rate limit. Check out the documentation for more details.)

Try to resolve it by:

  1. In you R console, type this code:
usethis::create_github_token()

It will open a page in browser, and create a “New personal access token” and copy it.

  1. Then type this code:
usethis::edit_r_environ()

and then add one line like below:

GITHUB_PAT=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

The GITHUB_PAT should be yours that is created in step 1.

And then restart R session and try again.

Install tidymass from Gitee ðŸ”—︎

If you can’t install packages from GitHub and GitLab, please try install packages from Gitee.

Install tidymass

remotes::install_git(url = "https://gitee.com/tidymass/tidymass", dependencies = TRUE)

Install tidymass by local packages ðŸ”—︎

Source the install_tidymass function.

Copy and paste the below code in your console.

source("https://www.tidymass.org/tidymass-packages/install_tidymass.txt")

Install packages

Copy and paste the below code in your console.

library(tidyverse)
install_tidymass(from = "tidymass.org")

Update tidymass

You can use the tidymass to check the version of all packages and update them.

Check version ðŸ”—︎

If you want to check if there are updates for tidymass and packages in it. Just check it like this.

tidymass::check_tidymass_version()

Update ðŸ”—︎

The update_tidymass() function can be used to update tidymass and packages in it.

tidymass::update_tidymass(from = "gitlab")

If the from = "gitlab" doesn’t work, try set it as from = "github" or from = "gitee".

Install docker version of tidymass

Docker is a set of platform as a service (PaaS) products that use OS-level virtualization to deliver software in packages called containers. So it is useful for people who want to share the code, data, and even analysis environment with other people to repeat their analysis and results.

We provide a docker version of tidymass, all the packages in tidymass and the dependent packages have been installed.

Install docker ðŸ”—︎

Please refer to the offical website to download and install docker. And then run docker.

Pull the tidymass image ðŸ”—︎

Open you terminal and then type code below:

docker pull jaspershen/tidymass:latest

Run tidymass docker image ðŸ”—︎

In your terminal, run the code below:

docker run -e PASSWORD=tidymass -p 8787:8787 jaspershen/tidymass:latest

The below command will link the RStudio home folder with the desktop of the local machine running the container. Anything saved or edited in the home folder when using the container will be stored on the local desktop.

docker run -e PASSWORD=tidymass -v ~/Desktop:/home/rstudio/ -p 8787:8787 jaspershen/tidymass:latest

Open the Rstudio server ðŸ”—︎

Then open the browser and visit http://localhost:8787 to power on RStudio server. The user name is rstudio and the password is tidymass.

Build your own docker image based on tidymass

You can build your own docker image, which contains all your code, data and analysis environment, which is more efficient for reproducible analysis.

Create dockerfile ðŸ”—︎

Create a dockerfile without extension. And then open and modify it.

FROM jaspershen/tidymass:latest
MAINTAINER "Xiaotao Shen" shenxt1990@outlook.com

RUN apt-get update && apt-get install -y curl

COPY demo_data/ /home/rstudio/demo_data/

RUN chmod 777 /home/rstudio/demo_data/

RUN R -e 'install.packages("remotes")'

RUN R -e "remotes::install_gitlab('tidymass/tidymass')"

If you want to install packages (for example ggraph) which are necessary for you analysis, please add a new line:

RUN R -e 'install.packages("ggraph")'

And you also need to copy your data to the image use the COPY.

Build image ðŸ”—︎

In the terminal, use below code to build the image.

docker build -t image-name -f Dockerfile .

Change the image-name.

Use the docker tag command to give the tidymass image a new name ðŸ”—︎

We need to create a account on the docker hub (https://hub.docker.com/) and then use the next code to link the local image to our account.

docker tag image-name your-account/image-name:latest

Push image to docker hub ðŸ”—︎

docker push your-account/image-name:latest

Then other people can download your image which contains your code, data and analysis environment, which make it is pretty easy to repeat your analysis and results.

How to pull docker image and run it can refer this document.

Session information

sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur ... 10.16
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] magrittr_2.0.3
## 
## loaded via a namespace (and not attached):
##   [1] utf8_1.2.2                  tidyselect_1.1.2           
##   [3] robust_0.7-0                htmlwidgets_1.5.4          
##   [5] grid_4.2.1                  BiocParallel_1.30.3        
##   [7] munsell_0.5.0               codetools_0.2-18           
##   [9] preprocessCore_1.58.0       interp_1.1-2               
##  [11] future_1.26.1               colorspace_2.0-3           
##  [13] Biobase_2.56.0              ggfortify_0.4.14           
##  [15] knitr_1.39                  rstudioapi_0.14            
##  [17] stats4_4.2.1                robustbase_0.95-0          
##  [19] Rttf2pt1_1.3.10             listenv_0.8.0              
##  [21] mzID_1.34.0                 MatrixGenerics_1.8.1       
##  [23] GenomeInfoDbData_1.2.8      polyclip_1.10-0            
##  [25] farver_2.1.1                parallelly_1.32.0          
##  [27] vctrs_0.4.1                 generics_0.1.3             
##  [29] xfun_0.31                   itertools_0.1-3            
##  [31] randomForest_4.7-1.1        R6_2.5.1                   
##  [33] doParallel_1.0.17           GenomeInfoDb_1.32.4        
##  [35] graphlayouts_0.8.0          clue_0.3-61                
##  [37] MsCoreUtils_1.8.0           bitops_1.0-7               
##  [39] gridGraphics_0.5-1          DelayedArray_0.22.0        
##  [41] assertthat_0.2.1            scales_1.2.0               
##  [43] ggraph_2.0.5                nnet_7.3-17                
##  [45] gtable_0.3.0                globals_0.15.1             
##  [47] affy_1.74.0                 tidygraph_1.2.1            
##  [49] rlang_1.0.5                 tidymass_1.0.7             
##  [51] mzR_2.30.0                  GlobalOptions_0.1.2        
##  [53] massqc_1.0.5                splines_4.2.1              
##  [55] extrafontdb_1.0             Rdisop_1.56.0              
##  [57] lazyeval_0.2.2              impute_1.70.0              
##  [59] checkmate_2.1.0             reshape2_1.4.4             
##  [61] BiocManager_1.30.18         yaml_2.3.5                 
##  [63] backports_1.4.1             Hmisc_4.7-0                
##  [65] extrafont_0.18              MassSpecWavelet_1.62.0     
##  [67] tools_4.2.1                 bookdown_0.27              
##  [69] ggplotify_0.1.0             metid_1.2.24               
##  [71] ggplot2_3.3.6               affyio_1.66.0              
##  [73] ellipsis_0.3.2              jquerylib_0.1.4            
##  [75] RColorBrewer_1.1-3          proxy_0.4-27               
##  [77] BiocGenerics_0.42.0         MSnbase_2.22.0             
##  [79] Rcpp_1.0.8.3                plyr_1.8.7                 
##  [81] progress_1.2.2              base64enc_0.1-3            
##  [83] zlibbioc_1.42.0             purrr_0.3.4                
##  [85] RCurl_1.98-1.7              prettyunits_1.1.1          
##  [87] rpart_4.1.16                deldir_1.0-6               
##  [89] viridis_0.6.2               pbapply_1.5-0              
##  [91] GetoptLong_1.0.5            S4Vectors_0.34.0           
##  [93] SummarizedExperiment_1.26.1 masscleaner_1.0.6          
##  [95] ggrepel_0.9.1               cluster_2.1.3              
##  [97] furrr_0.3.0                 RSpectra_0.16-1            
##  [99] masstools_1.0.8             data.table_1.14.2          
## [101] blogdown_1.10               openxlsx_4.2.5             
## [103] circlize_0.4.15             RANN_2.6.1                 
## [105] pcaMethods_1.88.0           mvtnorm_1.1-3              
## [107] ProtGenerics_1.28.0         matrixStats_0.62.0         
## [109] hms_1.1.1                   patchwork_1.1.1            
## [111] evaluate_0.15               XML_3.99-0.10              
## [113] massstat_1.0.3              jpeg_0.1-9                 
## [115] massprocesser_1.0.5         readxl_1.4.0               
## [117] fastDummies_1.6.3           IRanges_2.30.0             
## [119] gridExtra_2.3               shape_1.4.6                
## [121] compiler_4.2.1              ellipse_0.4.3              
## [123] tibble_3.1.7                ncdf4_1.19                 
## [125] crayon_1.5.1                htmltools_0.5.2            
## [127] corpcor_1.6.10              pcaPP_2.0-1                
## [129] tzdb_0.3.0                  Formula_1.2-4              
## [131] tidyr_1.2.0                 rrcov_1.7-0                
## [133] DBI_1.1.3                   tweenr_1.0.2               
## [135] ComplexHeatmap_2.12.1       MASS_7.3-57                
## [137] MsFeatures_1.4.0            Matrix_1.4-1               
## [139] readr_2.1.2                 cli_3.3.0                  
## [141] vsn_3.64.0                  igraph_1.3.2               
## [143] parallel_4.2.1              GenomicRanges_1.48.0       
## [145] pkgconfig_2.0.3             fit.models_0.64            
## [147] foreign_0.8-82              plotly_4.10.0              
## [149] MALDIquant_1.21             foreach_1.5.2              
## [151] rARPACK_0.11-0              bslib_0.3.1                
## [153] ggcorrplot_0.1.3            missForest_1.5             
## [155] rngtools_1.5.2              XVector_0.36.0             
## [157] massdataset_1.0.18          metpath_1.0.5              
## [159] doRNG_1.8.2                 yulab.utils_0.0.5          
## [161] stringr_1.4.1               digest_0.6.29              
## [163] Biostrings_2.64.0           xcms_3.18.0                
## [165] rmarkdown_2.14              cellranger_1.1.0           
## [167] htmlTable_2.4.0             rjson_0.2.21               
## [169] lifecycle_1.0.1             jsonlite_1.8.0             
## [171] mixOmics_6.20.0             viridisLite_0.4.0          
## [173] limma_3.52.2                fansi_1.0.3                
## [175] pillar_1.7.0                ggsci_2.9                  
## [177] lattice_0.20-45             KEGGREST_1.36.2            
## [179] fastmap_1.1.0               httr_1.4.3                 
## [181] DEoptimR_1.0-11             survival_3.3-1             
## [183] glue_1.6.2                  remotes_2.4.2              
## [185] zip_2.2.0                   png_0.1-7                  
## [187] iterators_1.0.14            ggforce_0.3.3              
## [189] class_7.3-20                stringi_1.7.8              
## [191] sass_0.4.1                  latticeExtra_0.6-30        
## [193] dplyr_1.0.9                 e1071_1.7-11